
EVALUATION TECHNIQUE IN THE SPI-CALCULUS FOR CRYPTOGRAPHIC PROTOCOLS

Hasan M. Al-Refai
halrefai@philadelphia.edu.jo
Hasan_alrefai@yahoo.com

Mobile Phone #: 00962-777357755
Abstract

Bisimulation as a technique could be well invested for proving authenticity and secrecy properties of
cryptographic protocols to gain the legality of protocol optimization. In this paper, we will do some changes
in the spi-calculus after the original work of M.Abadi and A.Gordon. Then we will introduce evade
bisimulation following Abadi and Gordon’s framed bisimulation proposal, in which a convenient proof
technique is presented. It will impose minimality requirements on the environment and detect the limit beyond
which the bisimilarity is kept valid and furthermore it will avoid quantification over contexts. Also, it will give
a solution for input transitions for the case of finite processes. Based on the revised spi-calculus would be
used to prove that evade bisimilarity, an equivalence relation, is decidable for main security properties:
Authenticity and Secrecy.

 Keywords: Cryptographic protocols, testing equivalence, Bisimulation , authenticity and secrecy

1. Introduction
The present era of modern developments is denoted by mobile communication. In this field a wide range of
proposals have been adopted as a result of the increased utilization of internet applications for business
transactions, E-commerce, exchanges of sensitive government information and enumerable military
implementation tasks. A considerable development in telecommunication networks has contributed to the
success of these applications. As all of these services take advantage of communication in distributed
systems in which computers are no longer considered devices that operate in isolation. Conversely, they are
now part of a global environment where local and remote resources can be shared.

The development of telecommunication networks has therefore encouraged the development of
services that take advantage from the communication among different distributed environments .It is clear
that most of these applications would not be applied without verifying the security decision.

The spi-calculus introduced by Abadi and Gordon [1] as an extension of the π-calculus [20, 19] with
cryptographic primitives has been used for cryptographic protocols modeling. By the implementation of
these tools, cryptographic protocols design is drawn for possible study and investigations to prove the main
security properties of the authentication and secrecy. The major attempts focused on in this thesis are testing
equivalence and bisimulation techniques in spi-calculus.

In general, through the bisimulation technique, two different systems could be decided as equivalent
when a correspondence between their steps is established or not equivalent when no correspondence is
approved. The correspondence involves system behavior steps and also the steps taken by its environment as
reactions. In the bisimulation modeling, it is not necessary to model an environment explicitly neither to
analyze its possible internal computations but all what is needed, is to forward the modeling aspect towards
the overall interaction between the system from one side and the environment from the reaction side.
M.Abadi and A.Gordon defined the Framed bisimilarity method [2] as a trend to prove process equivalence
based process-environment interactions. Their work represented a restricted attempt that necessitated the
existence levels of quantification over infinite domains. Our work follows Abadi and Gordon’s framed
bisimulation proposal. It introduces evade bisimulation in which a convenient proof technique is presented.
This technique is driven; it will detect the limit beyond which the bisimilarity is kept valid and avoid
quantification over contexts. In this paper, we will also introduce a new variant of the spi-calculus suggested
by [7]. Based on the revised spi-H-calculus would be used to prove that evade bisimilarity, an equivalence
relation, is decidable for main security properties: Authenticity and Secrecy.

2. THE Spi-H-CALCULUS
This section gives the syntax and informal semantics of the spi-H-calculus used by [7] with some changes,
after the original work of Abadi and Gordon [1]. The assumptions of this work are built on shared-key
cryptography.

 2

2.1 Syntax
Names and operators construct the syntax of the spi-H-calculus, primitively, and other structures are built on
them. Protocol model, is a structure of representative spi-H-calculus syntax. In this structure messages,
expressions, logical formulae and processes define the attributes needed to express all the objects and the
activities driven in establishing protocols. Table 1 summarizes the calculus.

Names N range over communication channels, data (variables or clear texts and a message) or keys.
Along the declaration, names are used alternatively through the syntax regardless of representations. Any
name would be tagged to the type by its appearance order.
Notation 1: We reserve the lower case letters a, b, ch to denote channels and k, l to denote keys and m, n to
denote messages.

Expressions are those descriptions that are obtained by applying encryption, decryption, paring and
projection operators to names and ciphertext. For example, the expression ζ is a cleartext, when it is
encrypted using the value η as a key, the overall actions would be given by)(ζηEnc , yielding that ζ as a

cleartext is encrypted under the key η, conversely the decryption action Decη{ζ} stands to decrypt the
ciphertext using the value of η as a key. We assume that a key should be a name and the encryption action
uses shared key in modes simple and nested modes.

Logical formulae generalize the usual equality operator of the π-calculus by conjunction and
negation. Moreover we introduce two new predicates]:[Nζ and]:[Mζ . The predicate]:[Nζ which
tests for the format of the argument ζ , whether it evaluates to a name or not, and the predicate]:[Mζ
which test for the argumentζ , whether it evaluates to a compound ciphertext or not, and with “Let”
construct that binds the value of some expression ζ to a name z.

 A finite set of terms, T = {t1, t2,…., tn}. The difference from Abadi and Gordon [1] that in this one

assume the set T to be defined, so that we can associate each state to a term t. In order to define the notion of
state we have to introduce the definition of finite multisets.
Definition 2: A finite multiset ϖ over a set L is a map ϖ : L → M such that ϖ - 1(M 1) is finite. We define
the following operations on finite multisets:
a) The difference of the multisets ϖ and ϖ′ is the multisetϖ \ϖ′where(ϖ \ϖ′)(l)= max(0,ϖ (l) -ϖ′ (l));
b) The union of two multisets ϖ and ϖ′ is the multiset ϖ′ϖU where (ϖ′ϖU)(l) = ϖ (l) + ϖ′ (l);
c) We say that l∈ ϖ iff ϖ (l) > 0.

We define formally our notion of state as follows:
Definition 3: We define a state, { } Ttt ∈σ=σ , to be a family of multisets indexed by the terms, where each

tσ represents the local state of the term t. We denote the set of all states by ∑ .
A first approach to the definition of state would be a family of sets. If we consider each tσ as a set, we were
restricting the possibility of a principal to have many copies of the same term. We want to deal with the
possibility of existing several inputs of the terms and verify that our system has the desired properties for
input transitions.

Processes are the different sequences of activities conducted along a protocol function. There are
diverse forms of processes that have a distinct function for each. A process could be built using a set of
operators that include standard π-calculus [20] and two new ones; Boolean guards and
encryption/decryption. However, process forms are used to explain the following:
• 0, is a null process that dose nothing.
• An input process; η(x).P represents input of a generic message x along η : the only useful case is when
η is a name , otherwise the whole process is stuck .

• An output process P.ζη represents out of ζ along the channel η .The only useful case is when η
is a name and ζ is a message, otherwise the whole process is stuck.

• Non-deterministic choice P + Q: can behave either as P or Q; the choice might either be triggereazd by
the environment, or by internal computations of P or Q.

• Parallel composition P | Q; is the parallel execution of P and Q.
• Restriction (νa)P: creates a new name a which is only known to P.
• Replication !P behaves like many unbounded copies of P running in parallel, i.e. P | P | P | ….

 3

• Boolean Guard φP behaves like P if the formula is logically true, otherwise is stuck.
• Encryption/Decryption let z = ζ in P: attempts evaluation of ζ: if the evaluation succeeds, the result

bound to z within P, otherwise the whole process is stuck.
Usual calculus abbreviate (ν a)(ν b) P into (ν a, b) P, and)(NM .0 into)(NM . In the spi-H-calculus,

processes are identified up to renaming of bound names. Bound names are the entities that are enclosed
within a process definition P, and not those that have explicitly been tagged with any other outside the
process. So the closed process will then be defined as the process that has no free variables; Proc is used to
define a set of closed processes.

Let fn(P) denote the set of free names in P and fv(P) is the set of free variables in P , and alpha-
equivalence arises as expected , n(P) is fn(P) ∪ bn(P). In this context, similar notations are used for
formulae, expressions and messages.

If two processes can be made equal by conflict-free renaming of bound names then they are alpha-
equivalent. Substitutions σ are mappings { }xζ from names x to messagesζ , following the usual
assumption that name-capture is avoided through implicit alpha conversion. Substitutions are applied to
processes, expressions and guards very simply as for example, P{ }xζ replace all free occurrence of x in P
by ζ , possibly renaming bound names in P avoiding name capture.
Definition 4: A substitution σ is a finite partial map from the set of names N to the set of messages M;
{M/x}.

The definition shows the effect of applying a substitution σ to a process P. This is essentially to
replace each free occurrence of each name (i.e.; x) in P by σ(x) = M, for some x and M .The mapping must,
however, be done in such a way that unintended capture of names by binders is avoided Substitutions are
applied to processes, expressions and guards in straightly, i.e. P{ }xM replace all free occurrence of x in P
by M, possibly renaming bound names in P avoiding name capture.

Domain and its co-domain of σ are denoted as dom(σ) and range(σ) respectively .Let n(σ)=








∈
)M(n)(dom

)(rangeMUU
σ

σ When a tuple of distinct names),...,,(21 nxxxx =r and a tuple of

messages)M,...,M,M(M n21=
v are given , the substitutions mapping of each xi to Mi will be convenient .

Usually a tuple is a set of its component. []xM vv
σ is the substitution σ ′ which represents union of σ and

[]xM vv
 . Such case is referred to as σ ′ extends σ.

In the current syntax of spi-calculus, the assumptions on the cryptographic systems are recalled thus:
1– For perfect encryption the key k used for encrypting a message M in the form Enck (M) should be used for

decrypting that message. Encrypting M under k can only produce the ciphertext. Thus, a hacker cannot
decrypt the message M without knowing the encryption key k.

2- The assumptions necessitate that there is enough redundancy in the structure of messages to ensure
whether the decryption of a message on a given key has actually succeeded or not and additionally, to
verify the role (either a key or a compound ciphertext).

3– Strictly, a new key is created by using fresh names from a primitive set of names.

 4

TABLE 1 Syntax of the Calculus

[]
[]

[]

)(nzthatassumedisit,inzlet
In.lyrespective,zanda,xnamesfor,scopeobviousthewith,bindersareinzletand

)av(,)x(aOperatorsand)x(,][,]N:[inoccurnotdoes).(DecthatassumedisIt

)decryption/encryption(Pinzlet|
)guardboolean(P|

)nrestrictio(P)nv(|
)nreplicatio(P!|

)choice(QP|
)ncompositioparallel(Q|P|

)prefixoutput(P.|
)prefixinput(P).x(|

)null(|
ΡprocessesR,Q,P

)decryption(inzlet|

)ilitydecomposabais(M:|
)nameais(N:|
)equality(|

guards||tt,
__

messages}M{kEnc|M,M|aN,M

)(|)(|,|

sexpression)(Dec|)(Enc|a,
__

Nnamesz,y,x...,n,m,l,k...,c,b,a

M

ζζ
ζ

ζηηηζζ

ζ
φ

ζη
η

φζ
ζ

ζ
ηζ

φφφψφ

ζπζπζζ

ζηζηηζ

∉=
=

=

=

+

=

=

=
Φ¬∧=

=

ℑ=

.
.

.....

::

::

::

::

0

21

2121

2.2 Operational Semantics
Two main evaluation modes are used in the operational semantics evaluation function. The first is utilized
for expressions while the second is used for Boolean Guards. These two evaluations are denoted as follows:

- For an expression { })M(symboldistinctaiswhereM: ∉⊥⊥⊥→⋅ Uε .
- For an evaluation of a Guard { } .oninductionbydefinedis,ff,tt: Φ→Φ⋅

The evaluation function is defined recursively according to table 2. In this table, it is obvious that
expression evaluations rely on the implementation of let and guard only. Hence, the decryption is bounded
along this evaluation scheme.

As table 3 shows, the operational semantics of the spi-H-calculus used in our work. Let and guard
items are used as primitive rules driven to decrypt messages. A process ΦP behaves like P provided that Φ
evaluates to true, otherwise, ΦP is stuck. A process Pinzlet ζ=





 zPlikebehaves ζ provided that the

evaluation of ζ succeeds; otherwise, Pinzlet ζ=




 zPlikebehaves ζ is stuck. Rule (E-OUT) details

the case when the environment receives a message M and updates its knowledge accordingly, and for the
sake of a transition to occur, all channels are supposed to be well announced to the environment.

Rule (E-INP) details the case, when the environment sends a message M to the process. Message m
is not arbitrary and the expression ζ describes how this message is built out of the environment and of the
names b

v
to define M. Creation of new names b

v
is recorded by []xb vv

, and in this case a must belong to the
knowledge of the environment to explain its announcement.

3. Evade Bisimulation
Based on the earlier works of framed bisimulation[7, 2], we concluded that their definition suffers from
quantification over all possible contexts, and furthermore it does not overcome the general problem for the
input transitions. Hence, the present work will solves these conducts to give a proper outcome overcoming
universal quantification.

 5

TABLE 2 Evaluation in the spi -Calculus





























⊥

===

⊥

==

=

⊥

∈=∈==

⊥

∈=∈==

=

otherwise
MandMsomefor,M,MifiM)(i,,ifor

otherwise
MandMsomefor

,MandMifM,M
,

otherwise
kand)M(kEncifM)(Dec

.otherwise
kand Mif)M(kEnc)(Enc

aa

212121

21
221121

21

ζζπ

ζζ

ζζ

ζηηζ

ζηηζ

NM

NM

{ }




















¬=¬

∈=
==

⊥≠
=

∈
=

∈=
==

∧=∧

=

otherwiseff
iftt

][

otherwiseff

iftt
]:[

otherwiseff
iftt

]:[

otherwiseff

MifxM
inzlet

tttt

M

M

N

M

N

ηζ
ηζ

ζ
ζ

ζ
ζ

ζφ
φζ

ψφψφ

ψψ

TABLE .3 The Operational Semantics of the spi-Calculus

{ }

[]
⊥≠

′=

′
=

′

′

/=
′′

′′

∉∋
′

′

∉
′

′

/=
′

′

′
≡′

′

′

′+

′

→

→

→

→

→

 → →

 →

 →

→

→

→

→

→

→

→

→

→

→

 →

=

 →

==

ζµζ

µζ
µφ

µ

υ

µµ
µ

µµ
µ

µ
α

µ

µ
µ

µ
µ

ηζη

φ

ηζη

if
PPinzlet

P}z{P)LET(ttif
PP
PP)GUARD(

)Pfn(}b{if
)Q|x

MP)(bv(TQ|P
QMa)bv(QPMaP)COM(

}b,a{c)M(nif
PMa)bvc(P)vc(

PMa)b(P)OPEN(

)(ncif
P)cv(P)cv(

PP)RES(

)Q(fn)(bnif
Q|PQ|P

PP)PAR(

QP

QPQQ
)ALPH(

PP!
PP!|P)REP(

PQP
PP)SUM(

xMPaMP).x(
)INP(

PMaP.
)OUT(

a]:[M]:[a]:[

0

0

I
v

v

v

v
v

v

I

NMN

Sensitive-environment bisimulation is like a game of interactions between a process steps and the

current environment’s knowledge about names and keys. The moves of the process are constrained by this
knowledge. This interaction can be ruled to be a proof technique for such systems under such environments.
We need to model the steps taken by the environment as a reaction to corresponding steps triggered by the
process. This can be implemented by building a function to map the reactions of the environment to
corresponding actions of the process.

In order to define evade bisimulation, we have to precisely define when two environments
represented by a pair of frame-theory (fr,th) with a pair of substitutions),(ρσ -(considered to have the
same domain and constructed in the structure of (fr,th) pair)- can be considered as equivalent . Informally,

 6

two environments () ()ρ,σρ,σ)ht,r(fandth)(fr, ′′′′ are equivalent whenever they are logically
indistinguishable under this pair of substitutions. In other words, in order to compare the knowledge of
environments, we need the environment behavior to be built into the frame-theory pair implemented by
profiting from a pair of equivalent substitutions. Here, the frame is defined as a set of pairs of names (not
like the original definition of Abadi and Gordon) considered to be known to the environments.
Definition 5: Let evade () ()ρ,σth,fre= be a frame-theory pair with a pair of equivalent substitutions
()ρ,σ such that ρσ ≈ (see Definition 7). A theory (th) is a finite subset of messages M X M indexed by using
the projections () ()thandth ii ππ for i = 1, 2 .A frame (fr) is a finite subset of names N X N known to the

environments. We denote by E the set of all evades.
Defining a finite partial function that is used for mapping the set of names (considered as a domain)

to the set of messages in the theory (considered as a proper co-domain), where the whole function is called
substitution σ , i.e.{ }xM , for some M ()σth∈∈M and)(variablesx N∈ .
Definition 6: Let the partial functions be as where,x:ρ,x:σ MM →→ then)(dom)(dom ρ=σ :

() () .ηζ:xfthen,Mη(x)ρandMζ(x)σwhen,(x)ρ(x)σ:xf2
andMΧMx:f(x)1

↔∈=∈=↔−
→−

To extend this definition to be defined in evade frame-theory pair with two equivalent substitutions,
we have to determine the left and right position in th as a string { } Ir,l ∈ , that is, a path through the nested
pairs of M .
Definition 7: let e = (fr, th) ()ρ,σ be evade framed-theory pairs is consistent iff for all ηζ and are

messages, such that [] [] () ()()






 =∈






 21 ,i,thη,ζM:η^M:ζ ρ,σrlrl iiii and using the projections with

indexes i = 1, 2 such that ζ
ρσπ =




















 r

i
l
i

,

l
i th and η

ρσπ =



















 r

i
l
i

,

r
i th to denote the left and right

position of the substitution pair corresponding to th. A frame is defined as a pair of names such
that [] [] ()









=∈





 21 ,i,frb,aN:b^N:a

1i rl , and a pair of substitutions),(ρσ considered equivalent

such that ρσ ≈ , when we have the following conditions:
() () () () { }

() () ()

() ()() () () () ()






=∈=






∈=

==→→→

==⇒∈∋∀






























21 ,ifor,thπηxρ^thπζxσxρ,xσ

thxf: thatsuch,η,ζx:xffunctionpartialaisthereηx:ρandζx:σ

forandn,...,2,1jforρdomσdomσdomxσdomwhere,ρandσ,x-i

ρσρσ

ρσ

rlrl

rl

,
r
ij

r
,

l
ij

l
j

r
j

l

,jjjjj

jj

 ii – () () ηηζζηζ ′=⇔′=∈′′ thenth),(if
ρ r,σ l

() ())x....,,x(xdomainsamethehaveρandσwhere,NxρNxσifiii n1j =∈⇔∈−
() () { } 0/=η ′=ηζ ′=ζ lkfrthenEncandEncif - iv

lk
,I

Definition 8: The synthesis S (.) of evade is defined as:
S (e) ()ρ,σ = S ()()e,,fr 0/ . We write () () ηζηζηζ ↔/∈↔ ff e,eS,fore otherwise.

The next definition formalizes the synthesis S(.) of evade in the concept of maximal decryption depth
of environments e, written dp(e). Elements in dp(e) represent the basic knowledge derivable from e, i.e. the
“building blocks” the environment can use to synthesize more complex messages.
Definition 9: let (th)

),(ρσ rl
 be a subset of M X M of messages, Definition 7. The maximal decryption depth

of (th) ()rl ρ,σ
 , written dp(th) ()rl ρ,σ

 can be derived by:

()
.

dp(th))ζ,(ζ
dp(th))µ,µ(dp(th))(ζEnc,)(ζEnc

Depth)Dec(Max
21

212µ1µ 21

∈

∈∈
−−

 7

Definition 10: Let the knowledge of th, written as kn(th) ()rl ρ,σ
, be the set of names in dp(th) ()rl ρ,σ

, i,e.:

N(th)dp:
)rρ,lσ(

(th)kn I= and ()() ()() () ()() () 




 ∈= r

j
l
j ,j

r
j

l
j

r
j

l thxρ,xσxρknxσkn
ρσ and the knowledge

of the environment e, written kn(e) ()ρ,σ is defined as a set of names in kn(th) ()rl ρ,σ
 and fr, i,e.:

() ()() Nρ ,σfr(th)dp:ρ ,σ(e)kn IU= . In other word we can define the knowledge of the as:

() () () ()
() fr.(th)kn:(e)kn:iseofknowledgetheand

M)ζ,(ζ^thdp)µ,µ(

|))(ζEnc,)(ζ(Enc
\(th)dp:(th)kn

rl

rl
rlrl

ρ ,σ

21ρ ,σ21

2µ21µ1
ρ ,σρ ,σ

U=













∈∈
=

Pairs of messages are decrypted using pairs of keys (names) considered equivalent by the
environment This being the maximal decryption depth of evade theory. The resulting notion of knowledge
kn(.) in fact preserves a minimal extension of the environment.
Note: From now, we will use the term non-decreasable function instead of knowledge of the environment
kn(e), which means, no knowledge is disclosed any more to the environment.
Definition 11: From Definition 3, we can define a state,







 =





=





=

∈∈
2,1iρρandσσ

thζζthζζ r
i

r
i

l
i

l
i

, to be a

family of multisets indexed by the terms l
iζ and r

iζ , where each tσ represents the local state of the term t in

σ and same for ρ , where),(r
i

l
i ζζ th∈ ()rl ρ,σ

.

()
()()

()
()()

()
()

()
() 2.,1i allforρrange(kn:ekn andρ(rangedp:edp

ρ, for case sameσrangekn:ekn andσrangedp:edpLet

ρ
thπ

ρ
thπ

σ
thπ

σ
thπ

l
i

l
i

l
i

l
i

==





=








=





=






:12Definition

We introduce a function that decrypts a pair of messages),(21 ζζ as far as possible, i.e.,
() th , ∈21 ζζ assumed as a range of a pair of substitutions),(ρσ , using the knowledge of e and the pair of
substitutions),(ρσ .
Definition 13: Let e = (fr,th) ()rl ρ,σ

 be evade frame-theory pairs,),(ii ηζ th∈ and given any equivalent

pairs of substitutions),(ρσ , such that
() () () () 




=



=

j
j

thπj
j

thπthπthπ x
η

 ρ,x
ζ

σif, ρ.~σ r
i

l
i

r
i

l
i

() ()()jj x,ρ,x,σcrux by denote we,Iji,and ∈ what are left of ()jj η,ζ after decrypting as much as
possible using the keys in () ()()j

r
j

l xρxσkn U . Formally, we define crux as:

() ()

()
() ()

()

() ()

()





































∈∋/

′=′=′′

=



















otherwise.η,ζ

ρσkn)l,(kfrand

)η(Encη,)ζ(Encζifη,ζcrux

:η,ζcrux

jj

thπthπ

jljjkjjj
ρ,σ

jj
ρ,σ

jr
i

jl
i

thjr
iπthjl

iπ

thjr
iπthjl

iπ

U

Definition 14: We decompose any pair of messages),(ηζ th∈ with a pair of equivalent substitutions
),(ρσ such that ρσ .~ into:

() ()[] =ηρζσ , ()() ()() 






















































 ...cruxlEnclEnc..

nlEnc,...cruxkEnckEnc...
nkEnc ηζ

1212
for),(ηζ th∈ ()rl ρ,σ

 and

any equivalent pair of substitutions),(ρσ with
() 




⊆ σ

thπn1 l
i

ekn}k....,,{k and

() 




⊆ ρ

thπn1 r
i

ekn}l.......,,{l , if
() ()

() () () 




 ′′=








 ηζ lEnc,kEncη,ζcrux
thr

iπthl
iπ

ρ,σ
, then we have

()
() () 






















∈∋/ ρ

thπ
ρ

thπ r
i

r
i

eeknl,kfr U . As a special case,

 8

() () 




 











=










































jxrρ,jxlσcruxjx,

thr
i

,jx,
thl

i
crux

π
ρ

π
σ

. Therefore,

() () () () 




















































∉∋/


































=)ρ(domjx)σ(domjx,

thr
iπ

ρ,jx,
thl

iπ
σcrux

thr
iπ

ρ
thl

iπ
σkn U

The environment e = (fr,th) ()rl ρ,σ
 pairs that only contains pairs of messages, is consistent if the

attacker cannot distinguish between the messages in () their and jxl:thl
i 





σπ intscounterpar

() Ijand,iallfor,jxr:thr
i ∈=





 21ρπ .

The attacker can:
1- distinguish between names and encrypted messages,
2- ascertain equality of messages and
3- attempt decryption of messages with a key of his own making.

To show the equivalence of the consistent evade pairs with consistent pairs of substitutions. We can
use the crux to get an evade as follows:
Note, we will use a short-hand C (.) for crux(.).
Definition 15: let () ok

)rρ,lσ(
thfr,e f= be an evade frame-theory pair considered consistent with the

equivalent pairs of substitutions),(ρσ , such that ρσ .~ , whenever the haveρandσ same domain
{ }nx,...,x jx 1= and for all i =1, 2. The following conditions hold:

() () ()

[] () [] ()
() ()() () () () ()

()() ()()
()() ()() ()() ()()

() () () () () () ()
()

[] [] orησζ)a

:eitherhavewe,21,andthatformThen.x,Cηand

x,σCζ:thη,ζletwe,ρdomxdomwhereρ.~σfor5

x ρCx ρCxσCxσC4

Nx ρCNxσC3

ρ.~σeηζethenηx ρandζxσif,thx ρ,xσ2

.x,Cηandx,σCσζthen

σdom)ζ(nwhere;]M:η[^]M:ζ[:η,ζ,ρdomxσdom,x1

r
j

r
j

l
j

l
j

j
r
j

r
j

j
l
j

l
j,

r
j

l
jjthth

n
r
nj

r
jn

l
nj

l
j

j
r
jj

l
j

ththj
r
jj

l
jj

r
jj

l
j

j
r
j

r
j

r
j

l
j

l
j

l

lrl
jj

r
j

l
j

r
i

l
i

r
i

l
i

⊥==

=

=∈==−

=⇔=−

∈⇔∈−

⇒↔==∈−

==

∈∃∈∋∀−

ρ

ρ

σ

ρρ

ρσππ

ππ
ff

[] ()
































=ζEnc....EncEncσζ

:thatsuchIfromindicesofι~tupleaandjareThere)b

l
j

l
j

l
j l

1j
ζl

2j
ζl

mj
ζ

[] ()































=Enc....EncEncη r

j
r
j

r
j r

1j
r

2j
r

mj

ηρ
ηηη

() ()()

()

()


















=



















=

∈−






















 
















































 


























....jx,r
jρC

jx,r
jρC

Enc

2j
x,r

jρC
.....Enc

mj
x,r

jρC

,....jx,l
jσC

jx,l
jσC

Enc

2j
x,l

jσC
.....Enc

mj
x,l

jσC

Encxρ

Encxσ

havewethenthx ρ,xσletabove,thefrom6

j
r
j

j
l
j

j
r
jj

l
j

Example 1: let () okr,lth,fre f




= ρσ

 be an evade frame-theory pair considered consistent with an

equivalent pair of substitutions),(ρσ , as in the previous Definition, and we have the following:

() { }() { }()(){ }
() { }() { }()(){ }22g12k

ρr
i

21g11k
σl

i

xηEnc,xζEncthπ

xηEnc,xζEncthπ

=

=
Then we have:

() () { }() { }()() { }() { }()()(){ }22g21g12k11kρ,σ
xηEnc,xηEnc,xζEnc,xζEncth rl = and () ()ρl

i
σl

i thπthπ ≈ .

 9

To compare the knowledge of environments we use the following pre-order:
Definition 16: let e = (fr, th) ()rl ρ,σ

 and e ′= ()







′′
rρ,lσ

ht,rf , e ′ extends e written as ee ′≤ if and only if

() () 



 ′⊆







rlrl ρ,σρ,σ
edpedp . Two evade frame-theory pairs e and e ′ with consistent pairs of substitution

such that ρσ ≈ are assumed M -equivalent, written (fr,th) ()rl ρ,σ
<> ()ht,rf ′′






 rρ,lσ

 if ee ′<> , ee <>′ and when

() ()eknekn ′= . Then <> is transitive and reflexive by the same properties for ⊆ . For results on anti-
symmetry, the following example and Corollary 21 are used:
Example 2: let () (){ } () ()()(){ } () (){ } () ()()()(){ }ζEncEnc,ζEnc,g,µ,η,ch,cheandζEnc,ζEnc,g,µ,η,ch,che gζµ2gµ1 ′=′=

then e1 <> e2. Generally, if e is evade, e1 ≤ e and e2 ≤ e then 21 eeee U<>U .

Lemma 17: ()eSeiffee ⊆′≤′
Proof: ()edpeee ⊆′⇒≤′ , since () ()edpedpe ⊆′⊆′ .
To show the other implication, assume that ()edpe ⊆′ and take any () ()rl ρ,σ

htη,ζ ′∈ such that

() () ()j
r

j
l

ρ,σ
xρxσe rl ↔′ f where () ()j

ll
i xσζhtπ ==′ and () ()j

rr
i xρη htπ ==′ for all i = 1,2 and x j = {x1

,…,xn} we have () () () () () () () ()hthtththhtthhtth ρσρσ,ρρ,σσ ′′′′ ≈⇒≈≈≈ where all have the same domain xj. We
show that () () ()xρxσe ρ,σ ↔f by induction on the derivation of () () ()xρxσe ρ,σ ′↔′′ ′′ f .

If () ()rl ρ,σ
htη,ζ ′∈ then () () ()j

r
j

l
ρ,σ

xρxσe rl ↔′ f by the assumption. Else, by the assumption of Max-

Dec-Depth, there are g,µ,η,ζ ′′ such that () ()ηEncηandζEncζ gµ ′=′= . By the induction hypothesis
ηζe ′↔′f and gµe ↔f .

An evade process pair is a triple)Q,P),e((where () ()rl ,th,fre ρσ= , fr is a frame, th is a

theory evaluated under a pair of substitutions)r,l(ρσ indexed by {l, r}where)(dom)(dom ρσ = and P
and Q are processes. An evade relation R is a set of evade process pairs. We write

RQ)P,,)e((ifQRPe ∈f . R is consistent if e is consistent whenever QRPe f .
Now we have got enough notations to define evade bisimilarity.

Definition 18: A consistent evade relation R is an evade simulation if whenever:

() () () ()

[] () [] ()

() () ()
() ,]N:[ηandM)ζ(,ch)(ηthatsuchη,ζ with)(xchµexists

therethen,]:[ζ,]:η[andMσ)ζ(,chσ)(ηthatsuchη,ζarethereand)(xchµif2

.QRPeandµthenµif1
then

)detectedarestransitionthe()σ(dom)µ,µ(fn ,)ρ(dom)σ(domfor))µ((chρ^))1µ((chσ)b

fresh)arenames(bound,ifor,frr
iπnr,lthr

iπn)µ(bn0frl
iπnr,lthl

iπn)(µbn)a

withQQPP andQRPe

222
r
i2222222

,
l
i1111

l
i1111111

21

21
r
i2

l
i

21

2µµ

frπ

thπfrπ

frπfrπ

rl

1

=∈==

∈=∈==−

′′==−

⊆=∈∈

=




=/=







′⇒′










































→→

ρρ

ττ

ρσρσ

ρσMN

f

III

f

21

 10

()()

() ()() () () ()(()()() ())

() ()()

() () () () ()

() () { } () () () ()()
() ()

()() { } () ()()() ()()
() (){ } .QRPthfr,ekn

:haveweThen.frπthπnQfnthπ

frπ

existstherethen0frπth(πnPfnthπ

frπif3

.x
ζQRx

ζPth,Bfrhaveweishable)indistinguareζandζ(ζζth),B(fr

fresh)arenamesnew(

frπthπnQfnBπ0frπthπn(P)fn((B)π

(ζn\(B)π(ζn\(B)π

andconsistentNXNBwithζ,ζthπ

rl

rlrl

rlrl

rlrl

rl

,

r
i,

r
i,

r
i2

2
r
i222222

l
i,

l
i1,

l
i1

1
l
i11111

2
2

1
1,2121

r
i,

r
i2

l
i,

l
i1

2211

21,
r
i2

2c~and]:[ζ

,]:[η,chρ)(ηand)σ(dom)η(fnthatsuchηisthereandζch2c~υµ

c~and]:[ζ

,]:η[andchσ1ηandσdom1ηfnthatsuchηisthereandζch1c~υµ

needed)arenamesnewall()0)

,Ballforand]M:[ζ

′′

/=

/=

−





′



′↔−

=/=−

−

⊂

∈

∈=⊆=

∈

∈=⊆=

=/=

∈

fU

UI

UI

fUfU

UIUI

U

U

UU

ρσ

ρσρσ

ρσρσ

ρσ

ρσρσ

ρσ

0

2

M

N

M

N

In the above definition, channel correspondence is checked by adding the channels to the fr
considered to be known by the environment. If there is no correspondence between
())fr((ch))fr((ch 21 π↔/π), the resulting environment will not be consistent.

On process output we use kn(.) to construct the new environment after the transitions. This
necessitates applying all decryptions with keys that are known by the environment, producing the minimal
extension of the environment e with (fr,th) () ()rl ,th,fr ρσ for th),(∈21 ζζ and () ()ρσ domdom = .

On process input, any input that the environment can construct (i.e., satisfying 21 ζ↔ζfU)th,Bfr(
must be considered. Automating bisimilarity checks is thus made difficult, since the set of potential inputs is
infinite. However, due to the large number of inputs to consider, this method is practical only for finite
processes. But here we showed that evade bisimilarity is decidable for finite processes (large number of
inputs, but not infinite).
Definition 19: S is an evade bisimulation if both S and 1−S are evade simulations.
Definition 20: An evade bisimilarity is the greatest evade bisimulation, written e≈ , which is the union of all
evade bisimulations (e≈ is symmetric).

7.3 PROVES AND PROPERTIES OF EVADE BISIMULATION:
Here, we will give some Lemmas proving our technique, and the main properties of preorder relation.
Corollary 21: Some properties relating ≤ with some operations:

()
() ().eeeetheneeandeeIf

.eeetheneeandeeIf
.eetheneeIf

21212211

2121

3

2
1

UU

U

≤′′≤′≤′−

≤′′≤′≤′−
≤′⊆′−

The two M -equivalent e and e ′ preserved by Kn(.) are equal, so the preorder ≤ is an ordering
relation on the set of them.
Lemma 22: If ee ′<> , then Kn(e) ≤ Kn(e ′).

From the Definitions 16 and 17 we have:
Definition 23: Evade is non-decreasable if e = kn (e). e is decreasable if e is not non-decreasable.

An alternative definition is as follows:
Lemma 24: An evade e is non-decreasable iff the following condition holds:
If () ()() () () ()rlrl ρ,σρ,σgk thg,kthenthηEnc,ζEnc ∉∈ ,where ()() ()xσthπ l

ρ,σ
l
i rl = , ()() ()xρthπ r

ρ,σ
r
i rl = and

() ()rl ρdomσdom = , for i = 1, 2.
Proof: if this holds then we cannot apply Max-Dec-Depth to any pair in ()rlth

ρσ ,
 with an equivalent pair of

substitutions, so dp(th) ()rl ρσ ,
 = th ()rl ρσ ,

. By the definition of kn(th) ()rl ρσ ,
 we then have that kn (th) ()rl ρσ ,

 =

th ()rl ρσ ,
. If th ()rl ρσ ,

 is non-decreasable then the disjointedness holds by the definition of kn (th) ()rl ρσ ,
, using

that dp (th) ()rl ρσ ,
 ⊇ kn (th) ()rl ρσ ,

.

Corollary 25: kn (th) ()rl ρσ ,
 is non-decreasable for all evades th.

 11

As might be expected, the non-decreasable function of evade can be used to generate any message
that can be generated by the hedge.
Lemma 26: For any evade e, ()() ()() .,, rlrl eknedpe ρσρσ <>≤
Proof: As ()() ()()rlrl ,, eknedpe ρσρσ ⊇⊆ Corollary 21 gives that ()() ()()rlrl ,, eknedpe ρσρσ ≥≤ . What
remains to be proved is ()() ()()rlrl ,, eknedp ρσρσ ≥ . By Lemma 17, it suffices to

show ()() ()()()rlrl ,, eknSedp ρσρσ ⊆ . Assume that () ()()rl ,eknη,ζ ρσ∈ , we show that () η↔ζfekn by
structural induction onζ . If N∈ζ then () ()()ρ,σeknη,ζ ∈ . Otherwise there are ζ ′ and k such that

()ζζ ′= kEnc . If () ()()rl ρ,σ, ekn∈ηζ . Otherwise, by definition of kn (.) there are η′ and g such that

() () () () ()
)ρ,σ(rl

)rρ,l σ(
edpg,kandedpη,ζ,ηgEncη ∈∈′′′= . By the induction hypothesis we have

() () gkekn rl ρ,σ ↔f and ()() ,ekn rl ρ,σ ηζ ′↔′f so by Max-Dec-Depth we have ()() η↔ζρσ f,ekn .

Non-decreasable evade is a subset of any M –equivalent evade.
Lemma 27: e.ethenedecreasablnnoiseandeeif ⊆′−′′ <>
Proof: Having any () ()






 ′′

′∈
rl ρ,σ

htη,ζ . As η↔ζ′ f<> eee , . We have two cases:

- If NN ∈η∈ζ or then () ()





 ′′

′∈
rl ρ,σ

ht,ηζ by Definition 7- (iii).

- Else, ()ζ′=ζ kEnc and ()ηη ′= gEnc . Since e′ is non-decreasable () egk ′∉, by Lemma 24. By
Definition 7- (iii) gkesogke ↔/↔/′ ff , and Max-Dec-Depth cannot derive η↔ζfe . This shows
that () e∈ηζ , .

Two M-equivalent non-decreasable evades are equal, so the preorder is ≤ an ordering relation in the
set of non-decreasable evades.
Corollary 28: If () ()






 ′′







′
rρ,lσrρ,l σ

ee <> and both e ande ′ are non-decreasable preserved by Kn(.), then e =e ′ .

The ordering of evades is preserved by kn (.).
Lemma 29: () ()()rl

rρ,lσ
ρ,σekneknthene,eIf ≤′≤′






 ′′

.

Proof: from Lemma 26 () ()












 ′′

≤′
rρ,l σrρ,lσ

edpekn , so by the transitivity of ≤ we only need to show

() ()()rl
rρ,lσ

ρ,σenkepd ≤′





 ′′

. By Lemma 17 this holds iff () ()()eknSedp ⊆′ , which we show by induction on the

derivation of ()





 ′′

′
rρ,lσ

edp . Take any () ()





 ′′

′∈
rρ,lσ

edpη,ζ , the base case is that () ()()rl ρ,σeη,ζ ′′′∈ . By Lemma 26

()() ()()rl rl ρ,σρ,σ enke ≤ , so ()() ()()rl rl ρ,σρ,σ enke ≤′ ′′ by the transitive of≤ . In particular, () ηζ↔fekn . Otherwise we

have to use Max-Dec-Depth to derive () ()()rl ρ,σeη,ζ ′′′∈dp which means that there are k and g such that

() ()() ()()rlht ρσ ′′′∈ ,gk dpηEnc,ζEnc and () ()()rl ρ,σ, ′′′∈ edpgk .By induction ()() () ()ηEncζEncekn gkρ,σ rl ↔f
and ()() gkekn rl ρ,σ ↔f . By Definition 7- (iii) () ()()rl ρ,σekng,k ∈ , so

() ()() ()()rl ,gk htknηEnc,ζEnc ρσ ′′′∉ by the definition of kn(.). Then Max-Dec-Depth must have been used
to derive ()() () ()ηEncζEncekn gkρ,σ rl ↔f , which gives that ()() ηζ ↔frl ρ,σekn .

The non-decreasable of two M-equivalent evades are equal.
Lemma 30: () () () () () () () ()rl rlrl rl ρ,σ,ρ,σ,

ekneknthen,eeif =′′
′′′′ ρσρσ

<> .

Proof: () () () ()rl rl ρ,σ,
eknekn <>

ρσ ′′
′ by Lemma 7.3.9. () ()rl ,

ekn
ρσ ′′

′ and () ()rl ρ,σ
ekn are both non-

decreasable by Corollary 25. The equality then follows from Corollary 28.
Lemma 31: then,evadesareeandeIf ′ () () () () () () () () 



 ′=





 ′

′′′′ rlrl rlrl ,ρ,σ,ρ,σ
eekneeknkn

ρσρσ
UU .

 12

Proof: By Corollary 21-(1) () () () () ()() 



 ′≤′ ′′′′

rlrl rl ,ρ,σ,
eee ρσρσ

U , so using Lemma 29 we have that

() ()() () () () () 



 ′≤′ ρσρσ ,ρ,σ, eeknekn rl U . By Lemma 26 () () () () 



 ′≤′

′′′′ rlrl ,,
ekne

ρσρσ
, so by transitivity

() () () () () () 



 ′≤′

′′′′ rlrl rl ,ρ,σ,
eekne

ρσρσ
U .Concerning () ()





rl ρ,σ
ekn , note that () () ⊆







rl ρ,σ
ekn

()()()rl ρ,σedp () () () ()() () ()

≤′⊆ ′′ rl rlrl

ρ,σ,ρ,σ ekneedp ρσU () () 
′

′′ rl ,
e

ρσ
U , where the last relation is due to

Lemma 17. By Corollary 21-(2) ()()() () () () () () () 



 ′≤





 ′

′′′′ rlrl rlrl
,ρ,σ,ρ,σ eekneekn
ρσρσ

UU , so

()()() () () () () () () 



 ′≤





 ′

′′′′ rlrl rlrl
,ρ,σ,ρ,σ eekneeknkn
ρσρσ

UU . ()() () () 



≤ rl rl

ρ,σρ,σ ekne by Lemma 26, so

by Corollary 21-(3) we have that ()() () () () () () () 



 ′











 ′

′′′′ rlrl rlrl
,ρ,σ,ρ,σ eeknee
ρσρσ

U<>U . By

Lemma 29 we have that ()() () () () () () () 



 ′





≤





 ′

′′′′ rlrl rlrl
,ρ,σ,ρ,σ eeknkneekn
ρσρσ

UU , so

()() () () () () () () 



 ′











 ′

′′′′ rlrl rlrl
,ρ,σ,ρ,σ eeknkneekn
ρσρσ

U<>U . The equality follows from Corollary 28.

From what we have seen so far, an environment mapping should preserve consistency. To prove that
this holds for the environment mappings we will define, we then investigate consistent evades and their
properties.
Lemma 32: If e is consistent then e is non-decreasable.
Proof: By Definition 7 for consistency, we have that ()() ()()() () ()rl ρ,σgk thηEnc,ζEnc ∈ implies

() () ()rl ρ,σ
frg,k ∉ . By Lemma 24 this means that e is non-decreasable.

Note that we have only used a special case of Definition 7 in the proof of Lemma 32. The all
conditions for consistency are pairwise disjointed, so consistency is a much stronger constraint than non-
decreasability.

For consistency a generalized version of Definition 7 is that a consistent evades cannot generate two
message pairs that only differ in one component.
Lemma 33: Let e be consistent evade with ηζe ↔f and ηζe ′↔′f . Then ηηiffζζ ′=′= .
Proof: By symmetry we need only to argue the case ζζ ′= . The proof is by induction on the derivation of

ηζ ↔fe . If () ()()rl ρ,σthη,ζ ∈ we will first show that () () ()rl ρ,σ
thη,ζ ∈′ . If ζ is a name this follows

from Definition 7. Otherwise ()MEnc k=ζ , but since ()()rl ρ,σ
l thk 1π∉ by Definition 7 of consistency

we cannot use Max-Dec-Depth to derive ηζe ′↔f . Now, we know that () ()()rl ρ,σthη,ζ ∈ and

() () ()rl ρ,σ
th η,ζ ∈′ , when () ()rl domdom ρσ = then ηη ′= by Definition 7 for consistency. If

() ()NEnc,MEnc gk == ηζ , NMe ↔f and gke ↔f then () ()rl ,
l thk

ρσ
π 1∈ by Definition 7. As e is

consistent, () ()rl ,
l th

ρσ
πζ 1∉ , so we must have used Max-Dec-Depth to derive ηζe ′↔f . This gives that

()NEnca ′=′η for some a, N ′ such that NMe ′↔f and ake ↔f . By induction N = N ′ and g = a.
Two M-equivalent consistent evades are always equal.

Lemma 34: If ee <>′ and both e′ and e are consistent, then e′ = e.
Proof: e′ and e are non-decreasable by Lemma 32. The equality follows from Corollary 28.

Any non-decreasable of a consistent evade is consistent.
Lemma 35: If e is consistent, e′ is non-decreasable and ee ≤′ then e′ is consistent.

Proof: Assume that () () ()rl ρ,σ
htη,ζ

′′
′∈ and note that ηζ ↔fe when () andxσζ l′= ()xρη r′= . We

only need to show one direction of the symmetric conditions.
1. If N∈ζ then () () ()rl ,

thη,ζ
ρσ

∈ by Definition 7, so N∈η as e is consistent.

 13

2. See Lemma 33.
3. Assume that ()MEnck=ζ . If () () ()rl ,

thη,ζ
ρσ

∈ then () ()rl ρ,σ
l
1 thπk ∉ by Definition 7 for consistency,

so () ()rl ρ,σ
l
1 htπk

′′
′∉ . Else Max-Dec-Depth has been used to derive ηζ ↔fe when () andxσζ l′=

()xρη r′= , so ()NEncg=η where gke ↔f and NMe ↔f . By Lemma 24 () eg,k ′∈ would
contradict that e′ is un-decreasable. If g≠η we have by Lemma 33 η↔/ ke f . This gives that

() e,k ′∉η so () ()rl ρ,σ
l
1 htπk

′′
′∉ .

Disjointed consistent evades may be directly combined.
Lemma 36: If e′ and e are consistent and n (e′) I n (e) = 0/ , then ee U′ is consistent.

Proof: Take any message pair such that () () ()() 












′∈






 ′′

rl
rρ,lσ

ρ,σthhtη,ζ U . By symmetry we may assume

that () ()





 ′′

′∈
rρ,lσ

htη,ζ .

1. NN ∈⇔∈ ηζ is clear, since e′ is consistent.
2. Take any () () () () 













′∈′′






 ′′

rlrρ,lσ ρ,σ
thhtη,ζ U . As () ()ηζ nn ≠/≠ 0 we have that

() ()





 ′′

′∈′′
rρ,lσ

htη,ζ whenever ζ = ζ ′ or ηη ′= . As e′ is consistent, ζ = ζ ′ iff ηη ′= .

3. If ()ζζ ′= kEnc and ()ηη ′= gEnc then ()σπ ′′∉ htk 1 and ()





 ′′

′∉
rρ,lσ

htg r
iπ as e′ is

consistent. As { } ()eng,k ′⊆ we have that { } () 0/=freng,k II and as a special case of this,

()







∉
rρ,lσ

thk l
iπ and ()








∉
rρ,lσ

thg r
iπ .

Conclusion And Future works
The importance of reasoning about knowledge for understanding distributed computations in the

field of process algebras has been given some emphasis in recent literature [3, 4, 5, 6, 9, 10, 11, 13].
Furthermore, there have been some formal descriptions of cryptographic protocols [2, 7, 8, 21, 22, 23, 24,
25, 26]. These works have suggested some useful proof techniques. Framed bisimulation is one of the
techniques introduced by Abadi and Gordon [2], in which they represent the knowledge of the environment
with which the protocol interacts in the form of a frame-theory pair.

Abadi and Gordon defined the Framed bisimilarity method as a trend to prove process equivalence
based process-environment interactions. Their work represented a restricted attempt that necessitated the
existence levels of quantification over infinite domains

Our work follows Abadi and Gordon’s framed bisimulation proposal. It introduces a new convenient
proof technique called evade bisimulation. This technique is proved to detect the limit beyond which the
bisimilarity is kept valid and avoids quantification over contexts for output transitions and a finite number of
input transitions.

In addition, we have shown that our new bisimilarity method based on spi-H-calculus coincides with
testing equivalence and we proved that evade bisimulation is a decidable technique for main cryptographic
protocols properties, namely: authenticity and confidentiality. Also, we deem that our technique is simply
can be a step toward automation, because of its strong structure in spi-H-calculus.

For further work, we believe that it will not be difficult to build evade bisimulation on public-key
cryptography. This is something we may look into in the future. We are greatly interested in developing our
method toward a symbolic evades bisimulation technique that may enable the automatic verification of
cryptographic protocols.

 14

References:

[1] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Journal of Information

and. Computation, 148(1): 1—70, 1999. An extended abstract appeared in the Proceedings of the Fourth ACM
Conference on Computer and Communications Security (Zurich, April 1997). An extended version of this paper
appears as Research Report 149, Digital Equipment Corporation Systems Research CenterA January 1998, and, in
preliminary form, as Technical Report 414, University of Cambridge Computer Laboratory, January 1997.

[2] M. Abadi and A. D. Gordon. A Bisimulation Method for Cryptographic Protocols. Nordic Journal of Computing,
5(4):267-303, Winter 1998. An extended abstract appeared in the Proceedings of ESOP '98, LNCS 1381, pages 12-
26.

[3] M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the spi calculus. In Proc. of CONCUR '97.
pages 59-73. LNCS 1243, 1997.

[4] M. Abadi. Two facets of authentication. In Proceedings of IIth IEEE Computer Security Foundations Workshop,
pages 25 32. IEEE press. 1998.

[5] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions on Computer Systems,
pages 18 36, February 1990.

[6] Robin Milner. The polyadic π-calculus: a tutorial. Technical Report ECS-LFCS-91-180, Laboratory for Foundations
of Computer Science, Department of Computer Science, University of Edinburgh, UK, October 1991. Appeared in
Proceedings of the International Summer School on Logic and Algebra of Specification, Marktoberdorf, August
1991. Reprinted in Logic and Algebra of Specification, ed. F. L. Bauer, W. Brauer, and H. Schwichtenberg,
Springer-Verlag, 1993.

[7] Hasan M. Al-refai, Tengku M. T. Sembok & Mohammed Yusoff. 2004. Decidablity of Cryptographic Protocol
Properties through Framed bisimulation. Proc. International conference on Informatics. 2(1): 779-796.

[8] M. Boreale, R. De Nicola and R. Pugliese. Proof Techniques for Cryptographic Processes. SIAMJournal on
Computing, 2002.

[9] Rocco De Nicola and Matthew C. B. Hennessy. Testing equivalence for processes. In Josep Diaz, editor, Automata,
Languages and Programming, 10th Colloquium, volume 154 of Lecture Notes in Computer Science, pages 548-
560, Barcelona, Spain, 18-22 July 1983. Springer-Verlag.

[10] D. Gollmann. What do we mean by Entity Authentication. In Proceedings of the 1996 IEEE Symposium on
Security and Privacy, pages 46-54. IEEE Computer Society Press, 1996.

[11] E.M. dark and J. Jacob. A survey of authentication protocol literature. 1997.

[12] R. Focardi, A. Ghelli, and R. Gorrieri. Using non interference for the analysis of security protocols. In Proceeding
of the DIMACS Workshop on Design and Formal Verification of Security Protocols, DIMACS Center, Rutgers
University, September 1997.

[13] J. C. Mitchell, M. Mitchell, and U. Stem. Automated analysis of cryptographic protocols using Murφ. In
Proceedings of the 1997 IEEE Symposium on Research in Security and Privacy, pages 141- 153. IEEE Computer
Society Press, 1997.

[14] R. Kemmerer, C. Meadows, and J. Millen. "Three systems for cryptographic protocol analysis". J. Cryptology,
7(2):79-130, 1994.

[15] A. Durante, R. Focardi, and R. Gorrieri. CVS: A compiler for the analysis of cryptographic protocols". In
Proceedings of 12th Computer Security Foundations Workshop. IEEE CS Press, 1999.

[16] R. A. Kemmerer. Analyzing encryption protocols using formal verification techniques. IEEE Journal on Selected
Areas in Communications, 7, 1989.

[17] C. Meadows. Applying formal methods to the analysis of a key management protocol. Journal of Computer
Security, 1(1):5-36, 1992.

[18] L. Paulson. Proving properties of security protocols by induction. In Proceedings of the 10th IEEE Computer
Security Foundations Workshop, pages 70-83, 1997.

[19] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, May 1999.

[20] R. Milner, J. Farrow, and D. Walker. A calculus of mobile processes, parts I and n. Information and Computation,
pages 1-40 and 41-77, September 1992.

 15

[21] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Theoretical Computer Science:
5th G I-Conference, Karlsruhe, volume 104 of Lecture Notes in Computer Science, pages 167-183. Springer-
Verlag, March 1981.

[22] M. Boreale, R. De Nicola and R. Pugliese. Proof Techniques for Cryptographic Processes. In Proceedings ofLICS
'99, pages 157-166. IEEE, Computer Society Press, July 1999.

[23] A. S. Elkjaer, M. Hohle, H. Huttel and K. Overgard. Towards Automatic Bisimilarity Checking in the Spi
Calculus. In C. S. Calude and M. J. Dinneen, eds, Combinatorics, Computation & Logic, volume 21(3) of
Australian Computer Science Communications, pages 175-189. Springer-Verlag Singapore Pte. Ltd., Jan. 1999. As
part of the Australian Computer Science Week, January 18-21, 1999.

[24] U. Frendrup, H. Huttel and J. N. Jensen. Two Notions of Environment Sensitive Bisimilarity for Spi-Calculus
recesses, http://www.cs.auc.dk/research/FS/ny/PR-pi/ESB/twoNotionsOfESB.ps, 2001.

[25] Johannes Borgstrom and Uwe Nestmann. On bisimulations for the spi calculus. In Helene Kirchner and Christophe
Ringeissen, editors, Proceedings of AMAST g002, volume 2422 of LNCS, pages 287-303. Springer, 2002.

[26] Hans Huttel. Deciding framed bisimilarity. In Antonin Kucera and Richard Mayr, editors, Proceedings of
INFINITY 2002, volume 68 of ENTCS. Elsevier Science Publishers, 2002.

[27] R. Focardi and R. Gorrieri. A classification of security properties. Journal of Computer Security, 3(1), 1995.

